贪心策略、区间问题
题目
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
- 可以认为区间的终点总是大于它的起点。
- 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
题解
方法一:贪心策略
在选择要保留区间时,区间的结尾十分重要:选择的区间结尾越小,余留给其它区间的空间
就越大,就越能保留更多的区间。因此,我们采取的贪心策略为,优先保留结尾小且不相交的区
间。
具体实现方法为,先把区间按照结尾的大小进行增序排序,每次选择结尾最小且和前一个选
择的区间不重叠的区间。
1 2
1 3
2 4
1 5
最后剩
1 2
2 4
1 | class Solution: |
1 | a = Solution() |
1