markdown公式符号大全。
上下标
- $a_0$,$a_{pre}\Longrightarrow$a_0,a_{pre}
- $a^0,a^{[0]}\Longrightarrow$a^0,a^{[0]}
括号
- $(,)\Longrightarrow$(,)
- $[,]\Longrightarrow$[,]
- $\langle,\rangle\Longrightarrow$\langle,\rangle
- $\lvert,\rvert \Longrightarrow$\lvert,\rvert
- $\lVert,\rVert\Longrightarrow$ \lVert, \rVert
- $\lbrace, \rbrace\Longrightarrow$\lbrace, \rbrace 或 \{, \}
增大括号方法
- $(x)\Longrightarrow$(x)
- $\big( x \big)\Longrightarrow$\big( x \big)
- $\Big( x \Big)\Longrightarrow$\Big( x \Big)
- $\bigg( x \bigg)\Longrightarrow$\bigg( x \bigg)
- $\Bigg( x \Bigg)\Longrightarrow$\Bigg( x \Bigg)
其他的大括号
- $\Bigg(\bigg(\Big(\big((x)\big)\Big)\bigg)\Bigg)\Longrightarrow$\Bigg(\bigg(\Big(\big((x)\big)\Big)\bigg)\Bigg)
- $\Bigg[\bigg[\Big[\big[[x]\big]\Big]\bigg]\Bigg]\Longrightarrow$\Bigg[\bigg[\Big[\big[[x]\big]\Big]\bigg]\Bigg]
- $\Bigg \langle \bigg \langle \Big \langle\big\langle\langle x \rangle \big \rangle\Big\rangle\bigg\rangle\Bigg\rangle\Longrightarrow$\Bigg \langle \bigg \langle \Big \langle\big\langle\langle x \rangle \big \rangle\Big\rangle\bigg\rangle\Bigg\rangle
- $\Bigg\lvert\bigg\lvert\Big\lvert\big\lvert\lvert x \rvert\big\rvert\Big\rvert\bigg\rvert\Bigg\rvert\Longrightarrow$\Bigg\lvert\bigg\lvert\Big\lvert\big\lvert\lvert x \rvert\big\rvert\Big\rvert\bigg\rvert\Bigg\rvert
- $\Bigg\lVert\bigg\lVert\Big\lVert\big\lVert\lVert x \rVert\big\rVert\Big\rVert\bigg\rVert\Bigg\rVert\Longrightarrow$\Bigg\lVert\bigg\lVert\Big\lVert\big\lVert\lVert x \rVert\big\rVert\Big\rVert\bigg\rVert\Bigg\rVert
运算括号
- $\lceil \frac{x}{2} \rceil\Longrightarrow$\lceil \frac{x}{2} \rceil
- $\lfloor x \rfloor\Longrightarrow$\lfloor x \rfloor
- $\lbrace \sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1} \rbrace\Longrightarrow$\lbrace \sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1} \rbrace
- $\left\lbrace \sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1} \right\rbrace\Longrightarrow$\left\lbrace \sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1} \right\rbrace
分数
- $\frac{a}{b}\Longrightarrow$\frac{a}{b}
开方
- $\sqrt{a + b}\Longrightarrow$\sqrt{a + b}
- $\sqrt[n]{a + b}\Longrightarrow$\sqrt[n]{a + b}
累加/累乘
- $\sum_{i = 0}^{n}\frac{1}{i^2}\Longrightarrow$\sum_{i = 0}^{n}\frac{1}{i^2}
- $\prod_{i = 0}^{n}\frac{1}{i^2}\Longrightarrow$\prod_{i = 0}^{n}\frac{1}{i^2}
三角函数
- $\sin\Longrightarrow$\sin
- $\cos\Longrightarrow$\cos
- $\tan\Longrightarrow$\tan
- $\cot\Longrightarrow$\cot
- $\cot\Longrightarrow$\cot
- $\csc\Longrightarrow$\csc
- $\bot\Longrightarrow$\bot
- $\angle\Longrightarrow$\angle
- $40^\circ\Longrightarrow$40^\circ
对数函数
- $\ln{a + b}\Longrightarrow$\ln{a + b}
- $\log_{a}^{b}\Longrightarrow$\log_{a}^{b}
- $\lg{a + b}\Longrightarrow$\lg{a + b}
二元运算符
- $\pm\Longrightarrow$\pm
- $\mp\Longrightarrow$\mp
- $\times\Longrightarrow$\times
- $\div\Longrightarrow$\div
- $\ast\Longrightarrow$\ast
- $\star\Longrightarrow$\star
- $\mid\Longrightarrow$\mid
- $\nmid\Longrightarrow$\nmid
- $\circ\Longrightarrow$\circ
- $\bullet\Longrightarrow$\bullet
- $\cdot\Longrightarrow$\cdot
- $\wr\Longrightarrow$\wr
- $\diamond \Longrightarrow$\diamond
- $\Diamond\Longrightarrow$\Diamond
- $\triangle\Longrightarrow$\triangle
- $\bigtriangleup\Longrightarrow$\bigtriangleup
- $\bigtriangledown\Longrightarrow$\bigtriangledown
- $\triangleleft\Longrightarrow$\triangleleft
- $\triangleright\Longrightarrow$\triangleright
- $\lhd\Longrightarrow$\lhd
- $\rhd\Longrightarrow$\rhd
- $\unlhd\Longrightarrow$\unlhd
- $\unrhd\Longrightarrow$\unrhd
- $\circ\Longrightarrow$\circ
- $\bigcirc\Longrightarrow$\bigcirc
- $\odot\Longrightarrow$\odot
- $\bigodot\Longrightarrow$\bigodot
- $\oslash\Longrightarrow$\oslash
- $\ominus\Longrightarrow$\ominus
- $\otimes\Longrightarrow$\otimes
- $\bigotimes\Longrightarrow$\bigotimes
- $\oplus\Longrightarrow$\oplus
- $\bigoplus\Longrightarrow$\bigoplus
- $\dagger\Longrightarrow$\dagger
- $\ddagger\Longrightarrow$\ddagger
- $\amalg\Longrightarrow$\amalg
关系运算符
- $\leq\Longrightarrow$\leq
- $\geq\Longrightarrow$\geq
- $\equiv\Longrightarrow$\equiv
- $\models\Longrightarrow$\models
- $\prec\Longrightarrow$\prec
- $\succ\Longrightarrow$\succ
- $\sim\Longrightarrow$\sim
- $\perp\Longrightarrow$\perp
- $\preceq\Longrightarrow$\preceq
- $\succeq\Longrightarrow$\succeq
- $\simeq\Longrightarrow$\simeq
- $\mid\Longrightarrow$\mid
- $\ll\Longrightarrow$\ll
- $\gg\Longrightarrow$\gg
- $\asymp\Longrightarrow$\asymp
- $\parallel\Longrightarrow$\parallel
- $\approx\Longrightarrow$\approx
- $\cong\Longrightarrow$\cong
- $\neq\Longrightarrow$\neq
- $\doteq\Longrightarrow$\doteq
- $\propto\Longrightarrow$\propto
- $\bowtie\Longrightarrow$\bowtie
- $\Join\Longrightarrow$\Join
- $\smile\Longrightarrow$\smile
- $\frown\Longrightarrow$\frown
- $\vdash\Longrightarrow$\vdash
- $\dashv\Longrightarrow$\dashv
极限
- $\lim\Longrightarrow$\lim
- $\rightarrow\Longrightarrow$\rightarrow
- $\infty\Longrightarrow$\infty
- $\lim_{n\rightarrow+\infty}n\Longrightarrow$\lim_{n\rightarrow+\infty}n
向量
- $\vec{a}\Longrightarrow$\vec{a}
箭头
- $\uparrow\Longrightarrow$\uparrow
- $\downarrow\Longrightarrow$\downarrow
- $\updownarrow\Longrightarrow$\updownarrow
- $\Uparrow\Longrightarrow$\Uparrow
- $\Downarrow\Longrightarrow$\Downarrow
- $\Updownarrow\Longrightarrow$\Updownarrow
- $\rightarrow\Longrightarrow$\rightarrow
- $\leftarrow\Longrightarrow$\leftarrow
- $\leftrightarrow\Longrightarrow$\leftrightarrow
- $\Rightarrow\Longrightarrow$\Rightarrow
- $\Leftarrow\Longrightarrow$\Leftarrow
- $\Leftrightarrow\Longrightarrow$\Leftrightarrow
- $\longrightarrow\Longrightarrow$\longrightarrow
- $\longleftarrow\Longrightarrow$\longleftarrow
- $\longleftrightarrow\Longrightarrow$\longleftrightarrow
- $\Longrightarrow\Longrightarrow$\Longrightarrow
- $\Longleftarrow\Longrightarrow$\Longleftarrow
- $\Longleftrightarrow\Longrightarrow$\Longleftrightarrow
- $\mapsto\Longrightarrow$\mapsto
- $\longmapsto\Longrightarrow$\longmapsto
- $\hookleftarrow\Longrightarrow$\hookleftarrow
- $\hookrightarrow\Longrightarrow$\hookrightarrow
- $\rightharpoonup\Longrightarrow$\rightharpoonup
- $\leftharpoondown\Longrightarrow$\leftharpoondown
- $\rightleftharpoons\Longrightarrow$\rightleftharpoons
- $\leftharpoonup\Longrightarrow$\leftharpoonup
- $\rightharpoondown\Longrightarrow$\rightharpoondown
- $\leadsto\Longrightarrow$\leadsto
- $\nearrow\Longrightarrow$\nearrow
- $\searrow\Longrightarrow$\searrow
- $\swarrow\Longrightarrow$\swarrow
- $\nwarrow\Longrightarrow$\nwarrow
集合
- $\emptyset\Longrightarrow$\emptyset
- $\in\Longrightarrow$\in
- $\in\Longrightarrow$\in
- $\notin\Longrightarrow$\notin
- $\subset\Longrightarrow$\subset
- $\supset\Longrightarrow$\supset
- $\not\subset\Longrightarrow$\not\subset
- $\subseteq\Longrightarrow$\subseteq
- $\supseteq\Longrightarrow$\supseteq
- $\cup\Longrightarrow$\cup
- $\bigcup\Longrightarrow$\bigcup
- $\cap\Longrightarrow$\cap
- $\bigcap\Longrightarrow$\bigcap
- $\uplus\Longrightarrow$\uplus
- $\biguplus\Longrightarrow$\biguplus
- $\sqsubset\Longrightarrow$\sqsubset
- $\sqsupset\Longrightarrow$\sqsupset
- $\sqcap\Longrightarrow$\sqcap
- $\sqsubseteq\Longrightarrow$\sqsubseteq
- $\sqsupseteq\Longrightarrow$\sqsupseteq
- $\vee\Longrightarrow$\vee
- $\wedge\Longrightarrow$\wedge
- $\setminus\Longrightarrow$\setminus
微积分
- $\prime\Longrightarrow$\prime
- $\int\Longrightarrow$\int
- $\iint\Longrightarrow$\iint
- $\iiint\Longrightarrow$\iiint
- $\oint\Longrightarrow$\oint
- $\nabla\Longrightarrow$\nabla
- $\int_0^2 x^2 dx\Longrightarrow$\int_0^2 x^2 dx
逻辑运算
- $\because\Longrightarrow$\because
- $\therefore\Longrightarrow$\therefore
- $\forall\Longrightarrow$\forall
- $\exists\Longrightarrow$\exists
- $\vee\Longrightarrow$\vee
- $\wedge\Longrightarrow$\wedge
- $\bigvee\Longrightarrow$\bigvee
- $\bigwedge\Longrightarrow$\bigwedge
上下标符号
- $\bar{a}\Longrightarrow$\bar{a}
- $\acute\Longrightarrow$\acute
- $\breve{a}\Longrightarrow$\breve{a}
- $\grave{a}\Longrightarrow$\grave{a}
- $\dot{a}\Longrightarrow$\dot{a}
- $\ddot{a}\Longrightarrow$\ddot{a}
- $\hat{a}\Longrightarrow$\hat{a}
- $\check{a}\Longrightarrow$\check{a}
- $\breve{a}\Longrightarrow$\breve{a}
- $\tilde{a}\Longrightarrow$\tilde{a}
- $\vec{a}\Longrightarrow$\vec{a}
- $\overline{a + b + c + d}\Longrightarrow$\overline{a + b + c + d}
- $\underline{a + b + c + d}\Longrightarrow$\underline{a + b + c + d}
- $\overbrace{a + b + c + d}\Longrightarrow$\overbrace{a + b + c + d}
- $\underline{a + b + c + d}\Longrightarrow$\underline{a + b + c + d}
- $\overbrace{a + \underbrace{b + c}{1.0} + d}^{2.0}\Longrightarrow$\overbrace{a + \underbrace{b + c}{1.0} + d}^{2.0}
希腊字母
$\Gamma\Longrightarrow$\Gamma
$\Delta\Longrightarrow$\Delta
$\Theta\Longrightarrow$\Theta
$\Lambda\Longrightarrow$\Lambda
$\Xi\Longrightarrow$\Xi
$\Pi\Longrightarrow$\Pi
$\Sigma\Longrightarrow$\Sigma
$\Upsilon\Longrightarrow$\Upsilon
$\Phi\Longrightarrow$\Phi
$\Psi\Longrightarrow$\Psi
$\Omega\Longrightarrow$\Omega
$\alpha\Longrightarrow$\alpha
$\beta\Longrightarrow$\beta
$\gamma\Longrightarrow$\gamma
$\delta\Longrightarrow$\delta
$\epsilon\Longrightarrow$\epsilon
$\varepsilon\Longrightarrow$\varepsilon
$\zeta\Longrightarrow$\zeta
$\eta\Longrightarrow$\eta
$\theta\Longrightarrow$\theta
$\iota\Longrightarrow$\iota
$\kappa\Longrightarrow$\kappa
$\lambda\Longrightarrow$\lambda
$\mu\Longrightarrow$\mu
$\nu\Longrightarrow$\nu
$\xi\Longrightarrow$\xi
$\omicron\Longrightarrow$\omicron
$\pi\Longrightarrow$\pi
$\rho\Longrightarrow$\rho
$\sigma\Longrightarrow$\sigma
$\tau\Longrightarrow$\tau
$\upsilon\Longrightarrow$\upsilon
$\phi\Longrightarrow$\phi
$\varphi\Longrightarrow$\varphi
$\chi\Longrightarrow$\chi
$\psi\Longrightarrow$\psi
$\omega\Longrightarrow$\omega
省略号
- $\dots\Longrightarrow$\dots
- $\ldots\Longrightarrow$\ldots
- $\cdots\Longrightarrow$\cdots
- $\vdots\Longrightarrow$\vdots
- $\ddots\Longrightarrow$\ddots
$$
x_1, x_2, \dots, x_n \quad \quad 1, 2, \cdots, n \quad \quad \vdots \quad\quad \ddots
$$
空格
- $123\quad123\Longrightarrow$123\quad123
- $123\qquad123\Longrightarrow$123\qquad123
其他符号
- $\aleph\Longrightarrow$\aleph
- $\hbar\Longrightarrow$\hbar
- $\imath\Longrightarrow$\imath
- $\jmath\Longrightarrow$\jmath
- $\ell\Longrightarrow$\ell
- $\wp\Longrightarrow$\wp
- $\Re\Longrightarrow$\Re
- $\Im\Longrightarrow$\Im
- $\mho\Longrightarrow$\mho
- $\nabla\Longrightarrow$\nabla
- $\surd\Longrightarrow$\surd
- $\top\Longrightarrow$\top
- $\bot\Longrightarrow$\bot
- $\neg\Longrightarrow$\neg
- $\flat\Longrightarrow$\flat
- $\natural\Longrightarrow$\natural
- $\sharp\Longrightarrow$\sharp
- $\backslash\Longrightarrow$\backslash
- $\partial\Longrightarrow$\partial
- $\Box\Longrightarrow$\Box
- $\clubsuit\Longrightarrow$\clubsuit
- $\diamondsuit\Longrightarrow$\diamondsuit
- $\heartsuit\Longrightarrow$\heartsuit
- $\spadesuit\Longrightarrow$\spadesuit
公式
分支公式
$$
y=
\begin{cases}
-x,\quad x\leq 0\
x, \quad x>0
\end{cases}
\tag{1}
$$
$$
y=
\begin{cases}
-x,\quad x\leq 0\\
x, \quad x>0
\end{cases}
\tag{1}
$$
矩阵
- 不带括号
$$
\begin{matrix}
1 & 2 & 3\
4 & 5 & 6 \
7 & 8 & 9
\end{matrix}
\tag{1}
$$
$$
\begin{matrix}
1 & 2 & 3\\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\tag{1}
$$
括号
$$\left(
\begin{matrix}
1 & 2 & 3\
4 & 5 & 6 \
7 & 8 & 9
\end{matrix}
\right)
\tag{2}$$$$\left( \begin{matrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right) \tag{2}$$
中括号
$$\left[
\begin{matrix}
1 & 2 & 3\
4 & 5 & 6 \
7 & 8 & 9
\end{matrix}
\right]
\tag{3}$$$$\left[ \begin{matrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] \tag{3}$$
大括号
$$\left{
\begin{matrix}
1 & 2 & 3\
4 & 5 & 6 \
7 & 8 & 9
\end{matrix}
\right}
\tag{4}$$
$$\left\{
\begin{matrix}
1 & 2 & 3\\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right\}
\tag{4}
$$
带省略号
$$
\left[
\begin{matrix}
a & b & \cdots & a\
b & b & \cdots & b\
\vdots & \vdots & \ddots & \vdots\
c & c & \cdots & c
\end{matrix}
\right]
\tag{5}
$$$$ \left[ \begin{matrix} a & b & \cdots & a\\ b & b & \cdots & b\\ \vdots & \vdots & \ddots & \vdots\\ c & c & \cdots & c \end{matrix} \right] \tag{5} $$
带横竖线分割的矩阵
$$
\left[
\begin{array}{c|cc}
1 & 2 & 3 \
4 & 5 & 6 \
7 & 8 & 9
\end{array}
\right]
\tag{6}$$
$$
\left[
\begin{array}{c|cc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\right]
\tag{6}
$$
- 横线用 \hline 分割
$$\left[
\begin{array}{c|cc}
1 & 2 & 3 \ \hline
4 & 5 & 6 \
7 & 8 & 9
\end{array}
\right]
\tag{7}$$
$$
\left[
\begin{array}{c|cc}
1 & 2 & 3 \\ \hline
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\right]
\tag{7}
$$